

Vaccines and Public Health

Johnny Kung

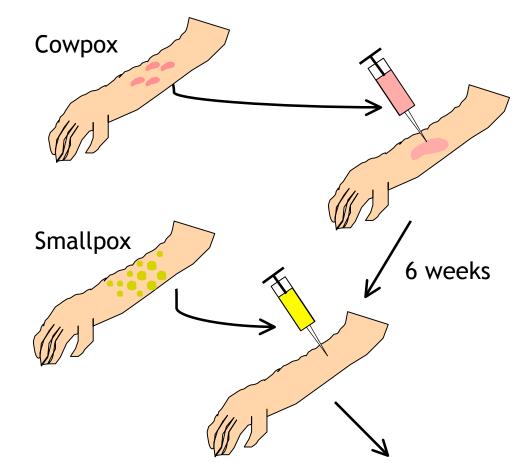
The Blight of Infectious Diseases

- Throughout history, millions succumbed to infectious diseases such as smallpox and polio
- By late 1700s, 400 000 people died per year in Europe from smallpox

Picture Source: Centers for Disease Control and Prevention

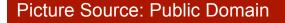
Jenner and the Invention of Vaccine

Edward Jenner (1749-1823)


- —Common observation: dairymaids who have had cowpox (similar to smallpox but much milder) do not contract smallpox
- *Hypothesis*: cowpox conferred *immunity* to smallpox

Jenner and the Invention of Vaccine

Experiment (1796):



Further confirmed with 22 other cases

No smallpox

— Vaccine, from Latin *vacca* (cow)

Vaccines and the Triumph over Smallpox

By 1800, vaccines administered across Europe and North America 1975: Rahima Banu, one of the last people naturally infected by smallpox

1950: Pan Am Health Orgeradication programthroughout Americas

By 1900: smallpox eliminated from much of industrialized world 1959: Beginning of global smallpox eradication program

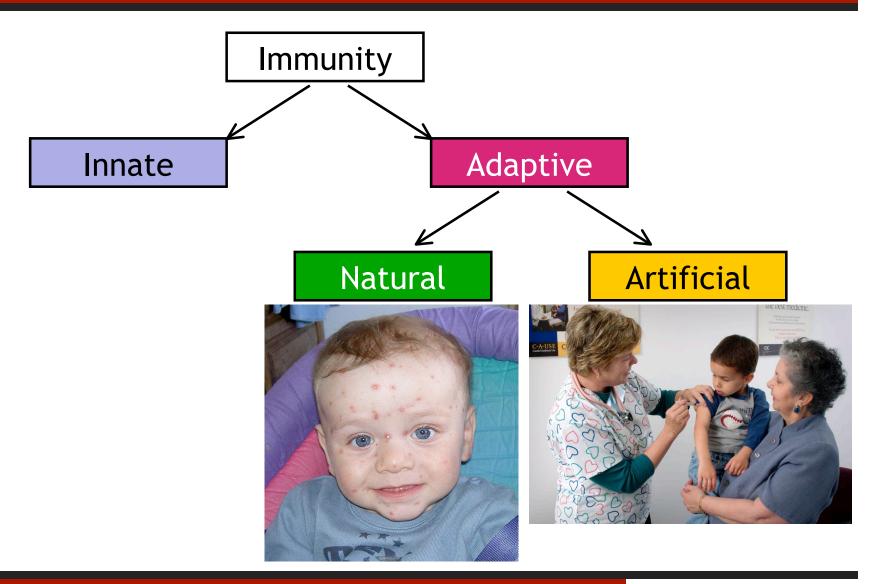
12/9/1979: WHO declared smallpox eradicated

Other Successes, and Work in Progress

Measles

Polio

Diphtheria


- Major diseases still to have reliable vaccine: tuberculosis, HIV, malaria
- Smallpox is the first, and only, human disease to be eradicated; polio eradication in progress

How do vaccines work?

Immunity

Picture Sources: Public Domain, CDC

Types of Vaccines

Туре	Component	Examples
Live, attenuated	Live microbe weakened by growth conditions in lab, or less dangerous relative	measles, rubella, mumps, yellow fever, typhoid, tuberculosis
Inactivated (Killed)	Microbe killed by chemicals, heat or radiation	flu, plague, polio, rabies, hep A, cholera
Subunit	1-20 parts of microbe that best stimulate immune response	hep B, HPV, flu

National Institute of Allergy and Infectious Diseases

Other Components of a Vaccine

- Preservatives/stabilizers: antibiotics, formaldehyde,
 MSG, thimerosal
- Adjuvants: substances that enhance immune response by mimicking molecules common to pathogenic microbes
 - —Aluminum salts (only type allowed in US)
 - —Squalene (derived from shark liver or plant oils)

Vaccines in the US

— Recommended Immunization Schedule:

- НерА; НерВ
- DTaP (Diphtheria, Tetanus, Pertussis)
- MMR (Measles, Mumps, Rubella)
- Varicella (chickenpox); Polio; Rotavirus
- Hib (against Haemophilus influenzae type b); PCV (against Streptococcus pneumoniae)
- Meningococcus (at 11-12 years)
- Human papillomavirus (for females; at 11-12 years)
- Flu (yearly)

Vaccines in the US

— Immunization coverage in children of 19-35 months

DTaP	85%
Polio	9 4%
MMR	92 %
Varicella	91 %
НерВ	94 %
НерА	40%
Hib	9 1%
PCV	80%

How do we know a vaccine works and is safe?

- 3 types of evidence:
 - -Clinical trials
 - Post-licensing safety monitoring
 - Population-level data

Clinical Trials

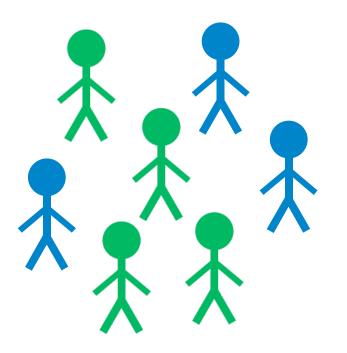
	Phase I 🛛 —	→ Phase II —	→ Phase III
Volunteer group size	20-100	100-300	10 000 or more
Duration	up to 2 yrs	2 or more yrs	up to 4 yrs
Looking for	safety, side effects, optimal dose / schedule	safety, immune response	safety, effectiveness

- When enough data is generated, a licensing application will be filed with FDA

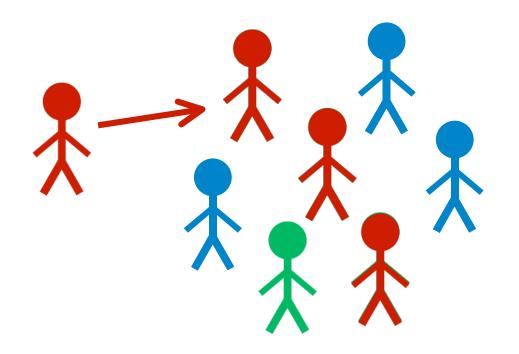
National Center for Immunization and Respiratory Diseases

Post-Licensing Safety Monitoring

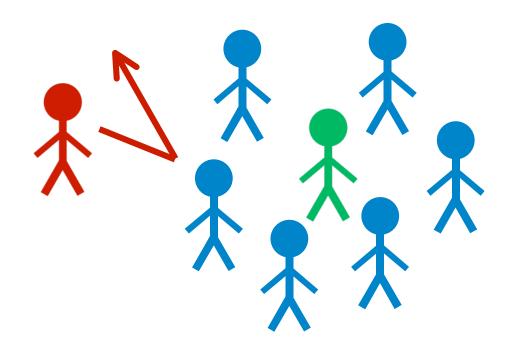
- National programs for reporting adverse events, eg, Vaccine Adverse Event Reporting System (VAERS)
- Need to conduct formal scientific investigation to test link between vaccine and event


- Coincidence or causal?

Vaccines Working at the Population Level


Herd Immunity

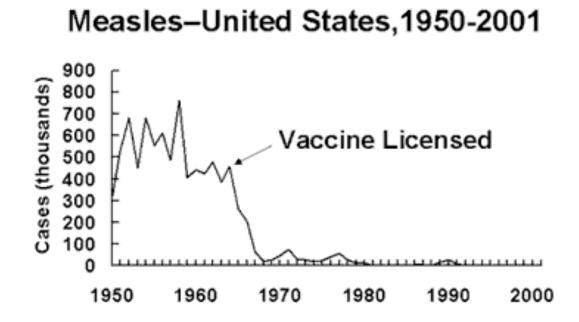
Vaccinated, immune Unvaccinated, susceptible


Herd Immunity

Vaccinated, immune Unvaccinated, susceptible Transmitting case

Herd Immunity

Vaccinated, immune Unvaccinated, susceptible Transmitting case


Herd Immunity Threshold

 Estimated % coverage needed to prevent disease from persisting in population

Diphtheria	85 %
Pertussis	92-9 4%
Polio	80-86%
Measles	83-94 %
Mumps	75-86%
Rubella	83-85%

Why Vaccines are Important

Why Vaccines are Important

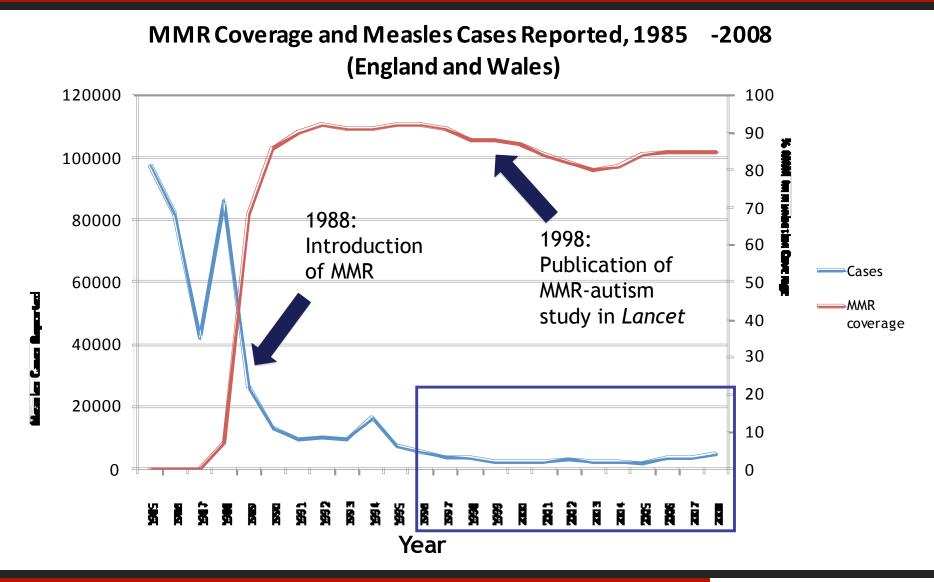
Disease	Annual Cases Pre-Vaccine	2008 Cases
Measles	503 282	55
Mumps	152 209	454
Rubella	47 745	11
Diphtheria	175 885	0
Pertussis	147 271	10 735
Tetanus	1314	19
Polio	16 316	0
Smallpox	48 164	0

The Economic Benefits of Vaccines

on direct healthcare cost

on indirect societal cost

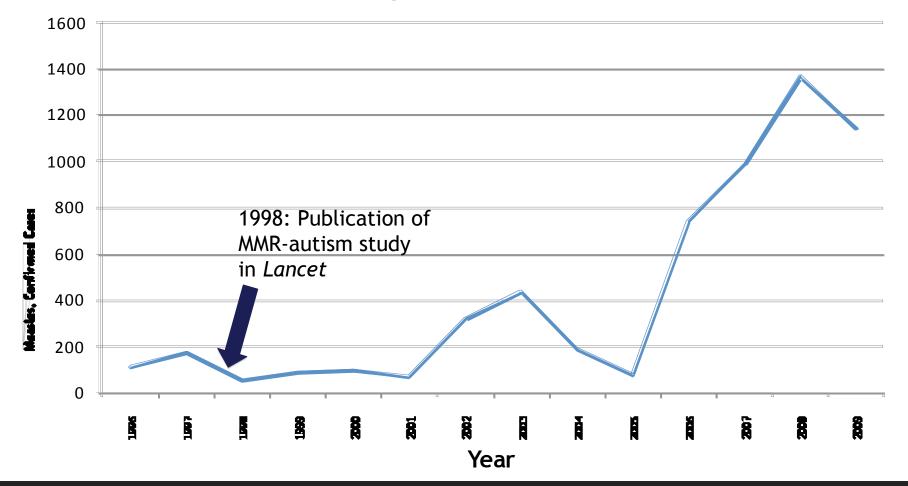
Zhou F., et al. Arch Pediatr Adolesc Med. 2005; 159(12):1136-1144



Why aren't vaccines perfect?

- Individual variation from person-to-person, due to genetics, environment, other illnesses, etc
- Rare events
 - Serious side effects: 1 in 10000 1 in million
- Some people should not be vaccinated
 - Had previous allergic reaction
 - Compromised immune system, eg, HIV / cancer patients

What happens if we stop vaccinating?



UK Health Protection Agency

What happens if we stop vaccinating?

Confirmed Measles Cases, 1996 -2009 (England and Wales)

UK Health Protection Agency

Summary

- Invention of vaccines had led to dramatic decrease in many infectious diseases
- Vaccines work by "teaching" immune system to respond quickly to real disease in future
- A vaccine is licensed only with enough evidence of its safety and efficacy
- Immunization coverage strongly correlated with changes in disease incidence

